



### Welcome!

**Easton Kuboushek** 

Executive Director
Soy Aquaculture Alliance

# Housekeeping

- Attendees are muted
- The webinar will be recorded and available at soyaquaculture.org
- For questions, please use the Q&A Function







# Agenda

- 1. Housekeeping
- 2. Acknowledgments
- 3. Introductions
- 4. Research Review by USB
- 5. Research Updates from Auburn University and the University of Idaho
- 6. Q&A

# Goals for Today:

- Review research projects related exploring the value of soy in aquafeed
- Discuss "What next?" and What if?" research priorities for U.S. aquaculture





### **Audience**

- Qualified State Soybean Boards (QSSBs)
- Academic
- Aquaculture Industry
- Agriculture
- Feed Companies
- Media

# 85+ Registrations!





# Thank you, members!





# Thank you, SAA Members!



























# SSOY + AQUACULTURE

















**Erica Curles** 

Science Communicator for Smithbucklin (United Soybean Board)







Dr. Allen Davis

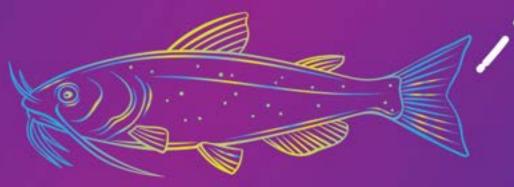
Professor for the School of Fisheries, Aquaculture and Aquatic Sciences at Auburn University







#### Dr. Vikas Kumar


Assistant Professor of Research for Fish Nutrition & Nutrigenomics at the University of Idaho







Easton Kuboushek







### **About SAA**

#### Mission:

Expand domestic aquaculture and the value of U.S. Soy in aquafeed.



### **About SAA**

### 2023 Strategic Programs

- 1. Aquaculture Research
- 2. Aquaculture Industry Relations
- 3. Soybean Industry Relations
- 4. Market Analysis and Development
- 5. Advocacy (Non-Checkoff)

# SAA Updates | Research

- Quarterly Research Report available next month!
- 2 project reports wrapped up in the last month, expecting final reports soon
- Looking ahead: 2024 RFP will open in October





## Other SAA Updates

- Attending 39<sup>th</sup> Annual Meeting of Fish Feed and Nutrition Workshop in July
- Thank you for reading The Fish Feed and following LinkedIn











#### Successes of SBM

- Tilapia SBM as main protein source<sup>1</sup>
- Spotted knifejaw 25% FM replacement by SBM<sup>2</sup>
- Golden pompano 25% FM replacement SBM<sup>3</sup>
- Largemouth bass Nutritional programming SBM in live feed<sup>4</sup>
- Zebrafish SBM in live feed advanced gut development and led to longer body length<sup>5</sup>
- Artemia Best performance with SBM as protein source<sup>6</sup>
- Humpback grouper 67% of FM protein replacement by SPI, PM, and hemoglobin powder blend<sup>7</sup>
- Hybrid striped bass SBM of different varieties, ADM SBM did best<sup>8</sup>
- Redlip mullet 50% replacement of FM without impacts<sup>9</sup>
- Yellow catfish SBM as main protein source improved egg production, diameter, and hatching rate<sup>10</sup>



#### Fermented SBM

- African catfish 40% FM replacement<sup>1</sup>, 50% FM replacement by fermented soy pulp/okara<sup>2, 3</sup>
- Goldfish 32% FM replacement<sup>4</sup>
- Rainbow trout 40% FM replacement<sup>5</sup>
  - 40% SBM has also been achieved through breeding<sup>6</sup>
- Mitten crab 15% FM replacement improved growth and protein content<sup>7\*</sup>
- Chinese perch 30% FM replacement + 2.27% hydroxyproline mitigate negative impacts of SBM on growth and improve texture<sup>8</sup>
- Sea cucumber attractive,  $\sqrt{FCR}$ ,  $\uparrow SGR$  and weight gain<sup>9</sup>
- White shrimp 75-100% replacement of  $FM^{10}$
- Coho salmon 40% FM replacement, ↓ FCR, ↑ final weight, SGR<sup>11</sup>



#### Enzyme-treated SBM

- Turbot 40% FM replacement by eSBM¹
- Channel catfish 100% FM and PM replacement,  $\downarrow$  FCR and  $\uparrow$  SGR<sup>2</sup>
- Abalone 75% FM replacement with no negative effects<sup>3</sup>



Photo: United Soybean Board



#### Functional Ingredients

- Sodium acetate Turbot, 45% FM replacement<sup>1</sup>
- Green tea and olive extracts largemouth bass, 31% SBM<sup>2</sup>
- Prebiotics improved growth in yellowtail with 25% FM replacement<sup>3</sup>
- Bacillus subtilis Phytase-producing reduced inflammatory response in zebrafish<sup>4</sup>, improved protein ADC and gut health in bullfrogs<sup>5</sup>, improved all parameters in red sea bream<sup>6</sup>
- Aloe vera reduced gut damage/inflammation markers and susceptibility to bacterial infection in zebrafish<sup>7</sup> and Atlantic salmon<sup>8</sup>
- Butyrate glyceride maintained healthy gut in black sea bream<sup>9</sup>, NaB preserved growth and gut morphology (33% SBM) in rice eel<sup>10</sup>, tributyrin mitigated negative effects in shrimp (44% SBM)<sup>11</sup>
- Betaine bullfrog (with GAA)<sup>12</sup>, tilapia<sup>13</sup> and rainbow trout<sup>14</sup>





#### Soybean Oil, Lecithin, and More

#### Fish Oil Substitution

- Red drum 50% FO replacement with SBM or SPC outperformed FM with FO/SO<sup>1</sup>
- Yellow drum 80% FM replacement increased fillet yield<sup>2</sup>

#### Benefits of Soy Lecithin

Largemouth bass – 4% SL increased weight gain, SGR, and crude protein<sup>3,4</sup>



#### Soybean Oil, Lecithin, and More

#### Successful Supplements

- Glycerol Monolaurate 0.04% full FO replacement in yellow croaker<sup>1</sup>
- Soybean oil-based polymer can protect phytase in pelleted diets<sup>2</sup>
- Tilapia diet restricted by 25%, 0.6% SBO prevented growth reduction, improved FCR, restriction reduced suspended solids<sup>3</sup>; finisher diet 45 g/kg SBO improved growth performance and PUFA<sup>4</sup>
- Tributyrin − 2-4 g/kg in yellow croaker, 75% FO replacement<sup>5</sup>

#### New Species

Red claw crayfish – optimal lipid level of 10%, 100% SO<sup>6</sup>





#### Is there opportunity for soy carbohydrates in aquafeeds?

- Soybean oligosaccharides replacing 1-5% of glucose in a biofloc system growing crucian carp<sup>1</sup>:
  - Increased:
    - Floc volume
    - Weight gain
    - Specific growth rate
    - Chao index of intestinal microbial species richness
  - Decreased:
    - *FCR*
    - Pseudomonas and Vibrio





#### **Non-Nutritional Benefits**

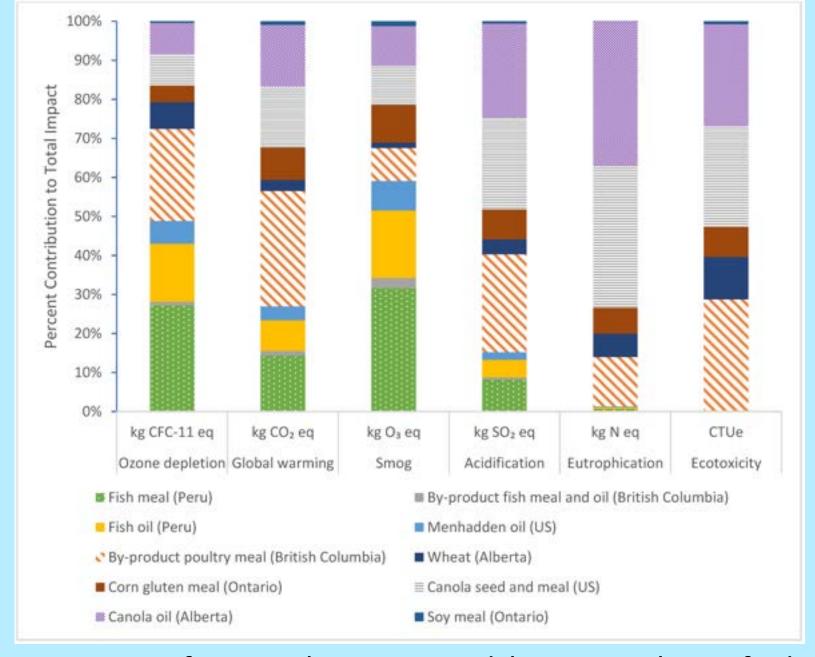
#### Soy isoflavones

- 1-5 g/kg diet of genistein leads to 80%+ female Japanese eels vs 90% males in the control group<sup>1</sup>
- 500 mg/kg soy isoflavones improve survival of challenged grass carp<sup>2</sup>
- Daidzein at 40 mg/kg in 40% SBM diets preserved growth performance and gut health of turbot<sup>3, 4</sup>
- Soybean phospholipid in the water reduces mortality of white shrimp under cold stress<sup>5</sup>
- If U.S. soybeans are used in grass carp diets reduced carbon footprint of feed by 15% compared to Brazilian soybeans<sup>6</sup>





#### **Meta-Analysis of Factors Causing Enteritis**


#### Impact of several variables on enteritis severity

- Raised in freshwater vs seawater
- SBM inclusion level
- Year the study took place
- Water temperature

#### • They found...

- Seawater and low water temperatures made enteritis more severe
- Increasing SBM inclusion level did not lead to more severe enteritis
  - Could be due to variety of sources
- Enteritis from SBM-based diets has decreased in severity over time

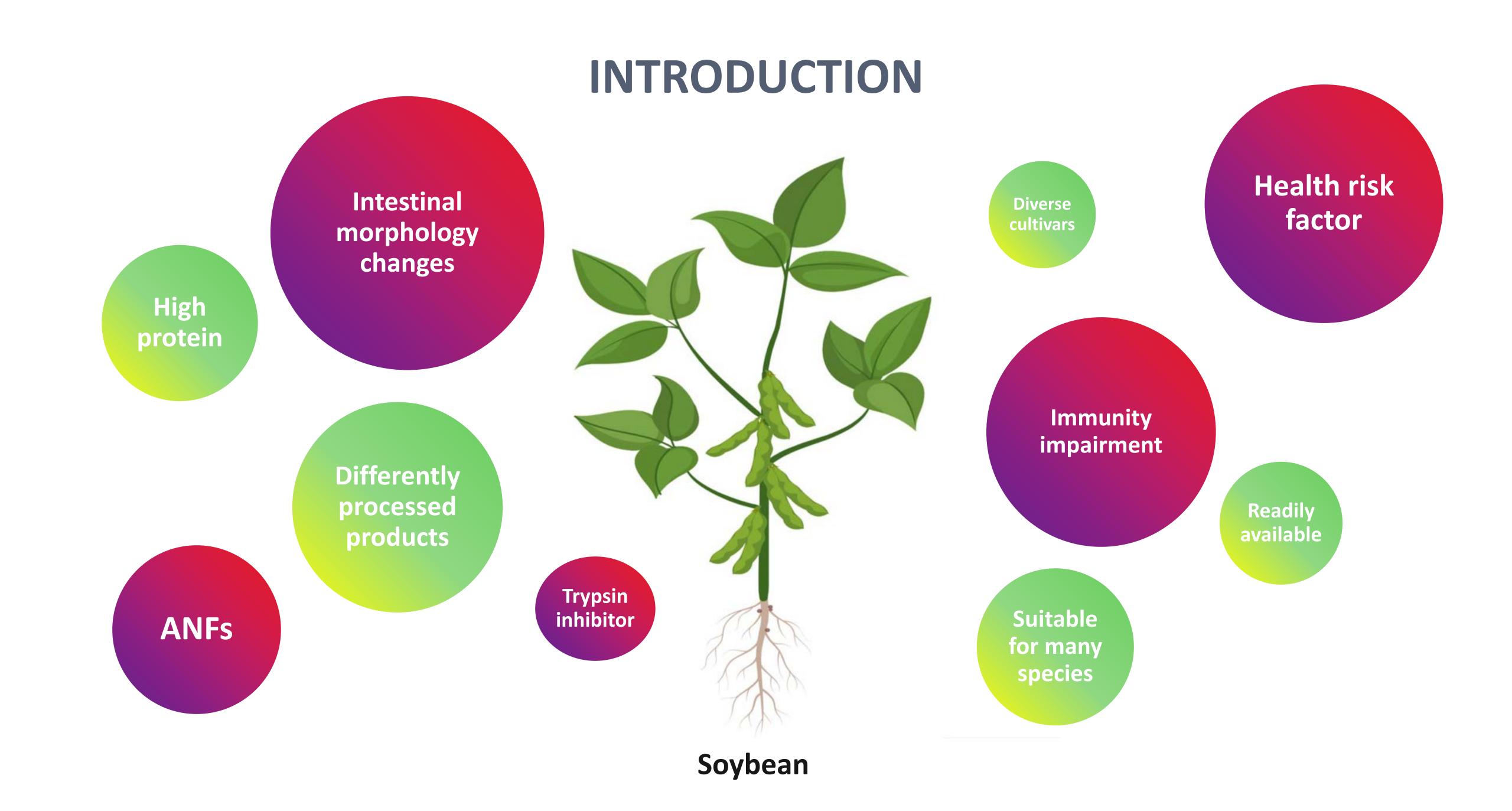




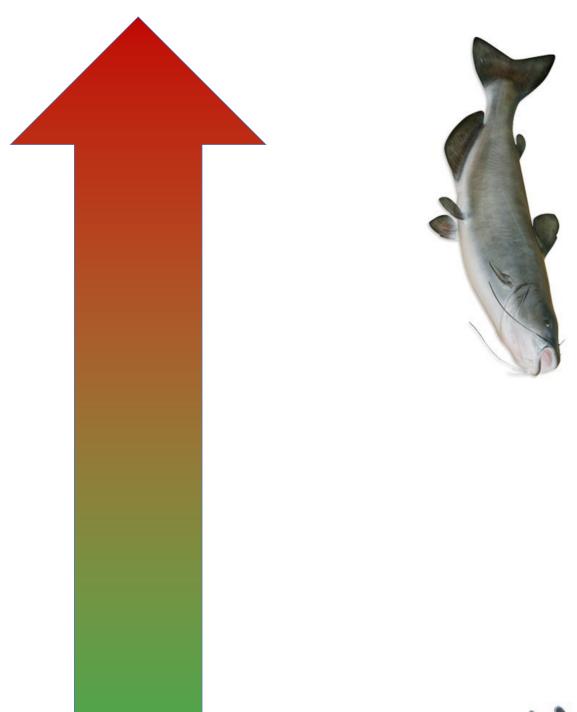
Life Cycle Assessment of Aquaculture Stewardship Council Certified Atlantic Salmon

Sherry and Koester, 2020




salmon (Oncorhynchus tshawytscha) but not in pink salmon (O. gorbuscha)






# INTRODUCTION Diverse High cultivars protein Readily Differently available processed Suitable for products many species

Soybean



# Soy in Aquatic Animal Feeds



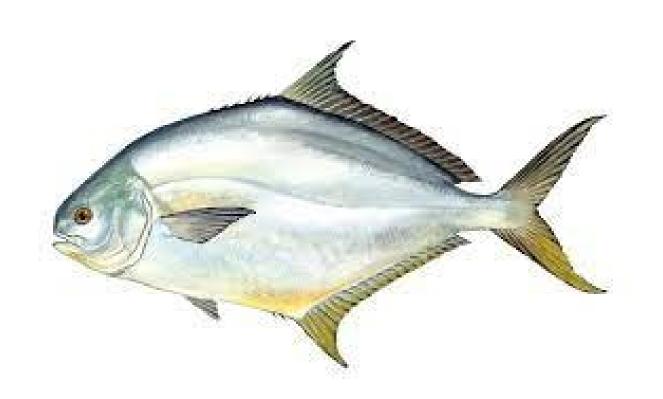


- Pacific white shrimp > 50% Soybean meal
- Catfish & tilapia
- Tolerant but Require 10-15% animal protein
  - Florida pompano 47% soybean meal
  - California Yellowtail (HSWRI) 30% SBM + 15%SPC
  - White Sea Bass (HSWRI) 30 % SBM + 8% SPC



- Lower tolerance -
  - Salmonids (primarily "allergic" response, often 20%)
     Can utilize highly processed soy products

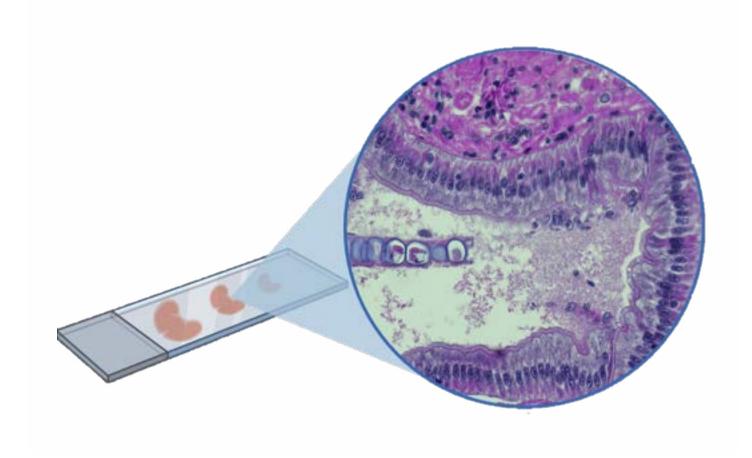
Objective: Improve commercial feeds.


## Florida pompano & Shrimp

• Benchmark practical open feed formulations with commercial diet.

 Evaluate and optimize the use of advanced soy products in fish and shrimp feed formulations.




# **OBJECTIVES: FLORIDA POMPANO**



**Growth performance** 



Feed utilization efficiency



Intestine histomorphology

Table 1. Dietary composition of high soy grow out diet formulated to 40% protein and 10% lipid.

| Composition        |       |
|--------------------|-------|
| Poultry meal       | 8.00  |
| Soybean meal       | 55.20 |
| CPC - Empyreal 75  | 10.00 |
| Menhaden fish oil  | 8.16  |
| Lecithin (soy)     | 0.50  |
| Whole wheat        | 14.49 |
| Mineral premix     | 0.25  |
| Vitamin premix     | 0.50  |
| Choline chloride   | 0.20  |
| Rovimix Stay-C 35% | 0.10  |
| CaP-dibasic        | 2.00  |
| Methionine         | 0.10  |
| Taurine            | 0.50  |



# Bench marking



| Trial 1 (n=6) | Biomass<br>(g) | Weight (g) | Weight Gain (%) | TGC    | FCR    | Survival<br>(%) |
|---------------|----------------|------------|-----------------|--------|--------|-----------------|
| Zeigler 40/10 | 886.9          | 60.45      | 160.0           | 0.087  | 1.86   | 97.78           |
| AU diet       | 780.9          | 55.17      | 138.8           | 0.078  | 2.05   | 94.44           |
| P Value       | 0.0260         | 0.0758     | 0.0057          | 0.0034 | 0.0153 | 0.0924          |
|               |                |            |                 |        |        |                 |
| Trial 2 (n=3) |                |            |                 |        |        |                 |
| Zeigler 40/10 | 3357.3         | 137.95     | 269.2           | 0.11   | 1.89   | 97.3            |
| AU diet       | 2852.7         | 125.56     | 226.1           | 0.10   | 2.05   | 90.7            |
| P Value       | 0.1919         | 0.3318     | 0.2836          | 0.4353 | 0.5769 | 0.2524          |
|               |                |            |                 |        |        |                 |

### INGREDIENTS









Solvent-extracted soybean meal (SBM)

#### **Bright Day**

Solvent-extracted soybean meal; low oligosaccharide (SBM-LO)

#### **Soycomil PE**

Soy protein concentrate (SPC)

#### **Hamlet HP300**

Fermented soybean Modified expeller-pressed meal soybean meal (FerSBM) (EPSBM)

#### INGREDIENTS PROXIMATE & AMINO ACIDS PROFILE

|                          | SBM            | SBM-LO            | SPC   | FerSBM | <b>EPSBM</b> | FM    | PBM   |
|--------------------------|----------------|-------------------|-------|--------|--------------|-------|-------|
| <b>Proximate Composi</b> | tion (g 100 g  | <sup>-1</sup> )   |       |        |              |       |       |
| Crude protein            | 43.28          | 53.36             | 55.26 | 61.56  | 43.20        | 64.75 | 67.06 |
| Moisture                 | 13.32          | 10.59             | 7.21  | 6.48   | 7.12         | 6.28  | 5.33  |
| Crude fat                | 0.26           | 0.00              | 1.36  | 0.00   | 5.57         | 9.09  | 12.50 |
| Crude fiber              | 3.65           | 2.93              | 4.16  | 6.31   | 5.03         | 0.66  | 0.93  |
| Ash                      | 5.92           | 6.24              | 6.87  | 6.19   | 6.80         | 19.77 | 9.97  |
| Amino acids Compo        | osition (g 100 | g <sup>-1</sup> ) |       |        |              |       |       |
| Histidine                | 1.12           | 1.39              | 1.43  | 1.62   | 1.11         | 1.66  | 1.34  |
| Isoleucine               | 2.05           | 2.61              | 2.71  | 2.99   | 1.94         | 2.56  | 2.57  |
| Leucine                  | 3.41           | 4.12              | 4.23  | 4.75   | 3.29         | 4.31  | 4.70  |
| Lysine                   | 2.81           | 3.34              | 3.25  | 3.97   | 2.41         | 4.89  | 4.14  |
| Methionine               | 0.60           | 0.73              | 0.74  | 0.83   | 0.58         | 1.69  | 1.32  |
| Phenylalanine            | 2.27           | 2.80              | 2.81  | 3.14   | 2.13         | 2.45  | 2.81  |
| Threonine                | 1.63           | 2.01              | 2.11  | 2.40   | 1.63         | 2.50  | 2.62  |
| Tryptophan               | 0.55           | 0.71              | 0.71  | 0.79   | 0.46         | 0.65  | 0.69  |
| Valine                   | 2.13           | 2.65              | 2.77  | 3.09   | 2.12         | 2.97  | 3.05  |

SBM: solvent-extracted soybean meal (Bunge)

FerSBM: fermented SBM meal (Hamlet HP300)

PBM: poultry by-product meal

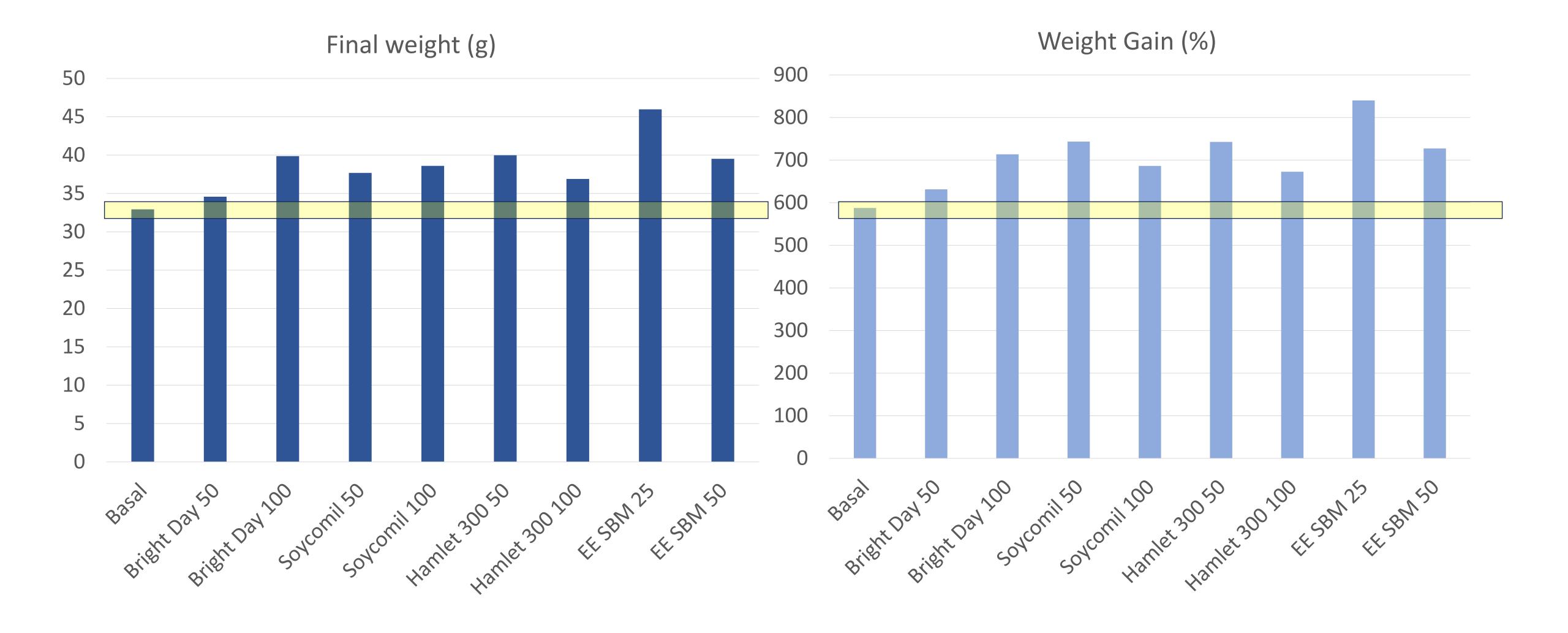
SBM-LO: SBM low oligosaccharide (Bright Day)

**EPSBM:** expeller-pressed soybean meal (All Sustained)

SPC: soy protein concentrate (Soycomil PE)

FM: fish meal

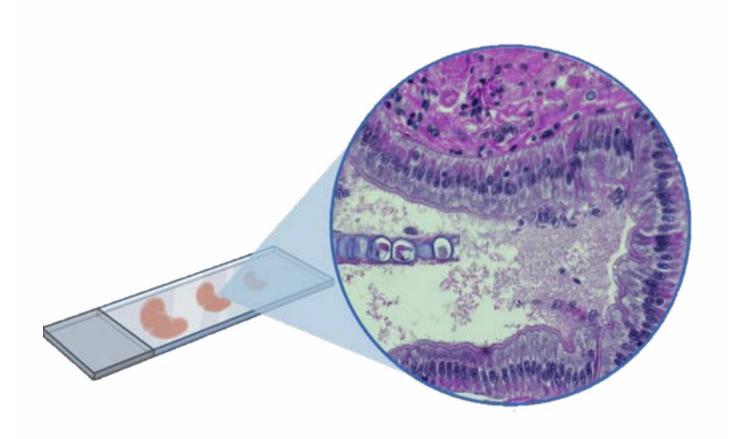
Florida pompano diets formulated to contain 40% protein and 10% lipid.


|                       | Basal | BrightDay<br>50% | BrightDay<br>100% | Soycomil<br>50% | Soycomil<br>100% | Hamlet<br>50% | Hamlet<br>100% | Expeller<br>SBM 25 | Expeller<br>SBM 50 |
|-----------------------|-------|------------------|-------------------|-----------------|------------------|---------------|----------------|--------------------|--------------------|
| Poultry meal          | 14.00 | 14.00            | 14.00             | 14.00           | 14.00            | 14.00         | 14.00          | 14.00              | 14.00              |
| SE Soybean meal       | 49.97 | 24.99            | 0.00              | 24.99           | 0.00             | 24.99         | 0.00           | 36.49              | 24.99              |
| Bright Day            |       | 21.00            | 42.00             |                 |                  |               |                |                    |                    |
| SPC Soycomil PE       |       |                  |                   | 18.55           | 36.95            |               |                |                    |                    |
| Hamlet HP 300         |       |                  |                   |                 |                  | 20.55         | 40.90          |                    |                    |
| Expeller-extruded SBM |       |                  |                   |                 |                  |               |                | 12.18              | 24.36              |
| CPC                   | 6.75  | 6.75             | 6.75              | 6.75            | 6.75             | 6.75          | 6.75           | 6.75               | 6.75               |
| Menhaden fish oil     | 3.42  | 3.42             | 3.42              | 3.42            | 3.42             | 3.42          | 3.42           | 3.42               | 3.42               |
| Soy oil               | 1.82  | 1.89             | 1.95              | 1.89            | 1.95             | 1.61          | 1.40           | 1.01               | 0.19               |
| Lecithin              | 0.50  | 0.50             | 0.50              | 0.50            | 0.50             | 0.50          | 0.50           | 0.50               | 0.50               |
| Corn Starch           | 0.13  | 4.05             | 7.98              | 6.60            | 13.13            | 4.89          | 9.73           | 2.23               | 2.37               |
| Whole wheat           | 20.00 | 20.00            | 20.00             | 20.00           | 20.00            | 20.00         | 20.00          | 20.00              | 20.00              |
| Premix                | 1.05  | 1.05             | 1.05              | 1.05            | 1.05             | 1.05          | 1.05           | 1.05               | 1.05               |
| CaP-dibasic           | 1.75  | 1.75             | 1.75              | 1.75            | 1.75             | 1.75          | 1.75           | 1.75               | 1.75               |
| Methionine            | 0.11  | 0.10             | 0.10              | 0.01            | 0.00             | 0.00          | 0.00           | 0.12               | 0.13               |
| Taurine               | 0.50  | 0.50             | 0.50              | 0.50            | 0.50             | 0.50          | 0.50           | 0.50               | 0.50               |

# Aquaria trial




# Response of juvenile pompano (4.8 g initial weight) to various soy sources over a 76-day culture period.

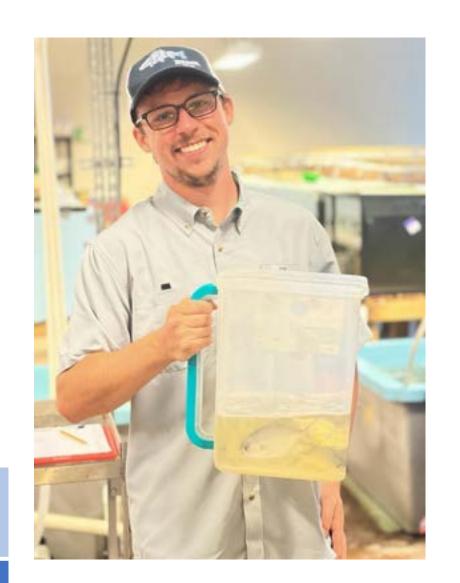

| Diets            | Final Biomass | Final Ind. | Weight Gain | P-Gain (%) | FCR     | Survival |
|------------------|---------------|------------|-------------|------------|---------|----------|
|                  | (g)           | Weight (g) | (g)         |            |         |          |
| Basal            | 306.93        | 32.93      | 27.67       | 587.67     | 2.12    | 95.00    |
| Bright Day 50%   | 315.40        | 34.58      | 29.79       | 631.35     | 2.19    | 92.50    |
| Bright Day 100%  | 367.95        | 39.87      | 34.93       | 713.68     | 2.12    | 92.50    |
| Soycomil 50%     | 329.83        | 37.68      | 33.22       | 743.46     | 2.33    | 86.67    |
| Soycomil 100%    | 357.33        | 38.6       | 33.67       | 686.43     | 2.12    | 92.50    |
| Hamlet 300 50%   | 389.78        | 39.98      | 35.19       | 742.80     | 2.09    | 97.50    |
| Hamlet 300 100%  | 351.35        | 36.89      | 32.07       | 672.67     | 2.08    | 95.00    |
| EP SBM 25%       | 413.65        | 45.97      | 41.06       | 840.07     | 1.88    | 90.00    |
| EP SBM 50%       | 383.95        | 39.52      | 39.52       | 727.41     | 2.12    | 97.50    |
| P-value          | 0.4572        | 0.4927     | 0.5227      | 0.7179     | 0.8741  | 0.9246   |
| PSE <sup>2</sup> | 36.31185      | 3.469595   | 4.5         | 84.2645    | 0.13065 | 6.0381   |



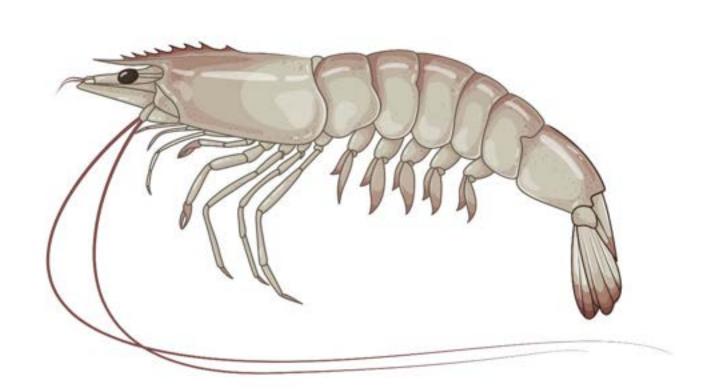
# Growth trial is completed working on histology and other measures.







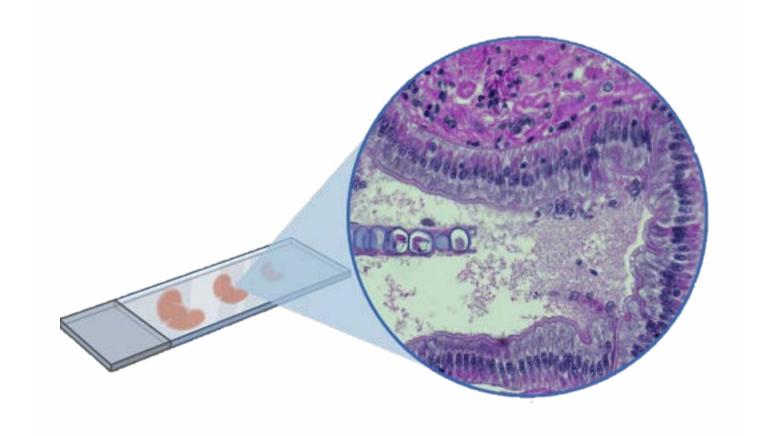

Intestine histomorphology


# Next step

# Looking at dose response to

|                   |        | Bright D | ay (low o | ligosacch | aride) | На    | mlet HP3 | 300 (ferme | nted) |
|-------------------|--------|----------|-----------|-----------|--------|-------|----------|------------|-------|
| Diet name         | 15% PM | 40       | 60        | 80        | 100    | 40    | 60       | 80         | 100   |
| Poultry meal      | 14.00  | 14.00    | 14.00     | 14.00     | 14.00  | 14.00 | 14.00    | 14.00      | 14.00 |
| SE Soybean meal   | 50.00  | 30.00    | 20.00     | 10.00     | 0.00   | 30.00 | 20.00    | 10.00      | 0.00  |
| Bright Day        | 0.00   | 16.85    | 25.25     | 33.65     | 42.00  |       |          |            | 0.00  |
| HP 300            |        |          |           |           |        | 16.30 | 24.40    | 32.50      | 40.65 |
| CPC               | 6.77   | 6.77     | 6.77      | 6.77      | 6.77   | 6.77  | 6.77     | 6.77       | 6.77  |
| Menhaden fish oil | 3.42   | 3.42     | 3.42      | 3.42      | 3.42   | 3.42  | 3.42     | 3.42       | 3.42  |
| Soy oil           | 1.82   | 1.87     | 1.90      | 1.93      | 1.95   | 1.65  | 1.57     | 1.48       | 1.40  |
| Lecithin (soy)    | 0.50   | 0.50     | 0.50      | 0.50      | 0.50   | 0.50  | 0.50     | 0.50       | 0.50  |
| Corn Starch       | 0.09   | 3.19     | 4.76      | 6.33      | 7.96   | 3.96  | 5.94     | 7.93       | 9.86  |
| Whole wheat       | 20.00  | 20.00    | 20.00     | 20.00     | 20.00  | 20.00 | 20.00    | 20.00      | 20.00 |
| Premix            | 1.05   | 0.25     | 0.25      | 0.25      | 0.25   | 0.25  | 0.25     | 0.25       | 0.25  |
| CaP-dibasic       | 1.75   | 1.75     | 1.75      | 1.75      | 1.75   | 1.75  | 1.75     | 1.75       | 1.75  |
| Methionine        | 0.10   | 0.10     | 0.10      | 0.10      | 0.10   | 0.10  | 0.10     | 0.10       | 0.10  |
| Taurine           | 0.50   | 0.50     | 0.50      | 0.50      | 0.50   | 0.50  | 0.50     | 0.50       | 0.50  |




# **OBJECTIVES PACIFIC WHITE SHRIMP**



**Growth performance** 



Feed utilization efficiency



Intestine histomorphology



Physiological gene expression

## INGREDIENTS



**Plant-based**Soybean meals

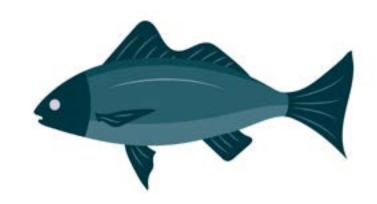


Solvent-extracted soybean meal (SBM)



Bright Day
Solvent-extracted
soybean meal; low
oligosaccharide (SBM-LO)




Soycomil PE
Soy protein
concentrate
(SPC)



Hamlet HP300
Fermented soybean
meal
(FerSBM)



Modified expeller-pressed soybean meal (EPSBM)



Animal-based
Fishmeal + Poultry byproduct meal



Poultry by-product meal



Special Select Fishmeal

## DIET FORMULATION

| Composition                | Basal | SBM-LO<br>50% | SBM-LO<br>100% | SPC<br>50% | SPC<br>100% | FerSBM<br>50% | FerSBM<br>100% | EPSBM<br>100% | Animal |
|----------------------------|-------|---------------|----------------|------------|-------------|---------------|----------------|---------------|--------|
| Fishmeal                   | 60    | 60            | 60             | 60         | 60          | 60            | 60             | 60            | 177    |
| Poultry by-product meal    |       |               |                |            |             |               |                |               | 177    |
| Soybean meal               | 480   | 240           |                | 240        |             | 240           |                |               |        |
| SBM-Low<br>Oligosaccharide |       | 202           | 404.5          |            |             |               |                |               |        |
| Soy protein concentrate    |       |               |                | 179.5      | 359.5       |               |                |               |        |
| Fermented SBM              |       |               |                |            |             | 199           | 398            |               |        |
| Enzyme treated SBM         |       |               |                |            |             |               |                | 477.5         |        |
| Other ingredients          | 460   | 498           | 535.5          | 520.5      | 580.5       | 501           | 542            | 462.5         | 646    |

SBM: solvent-extracted soybean meal (Bunge) SBM-LO: SBM low oligosaccharide (Bright Day)

**SPC:** soy protein concentrate (Soycomil PE)

FerSBM: fermented SBM meal (Hamlet HP300)

EPSBM: expeller-pressed soybean meal (All Sustained) FM: fish meal

PBM: poultry by-product meal

## **GROWTH PERFORMANCE**

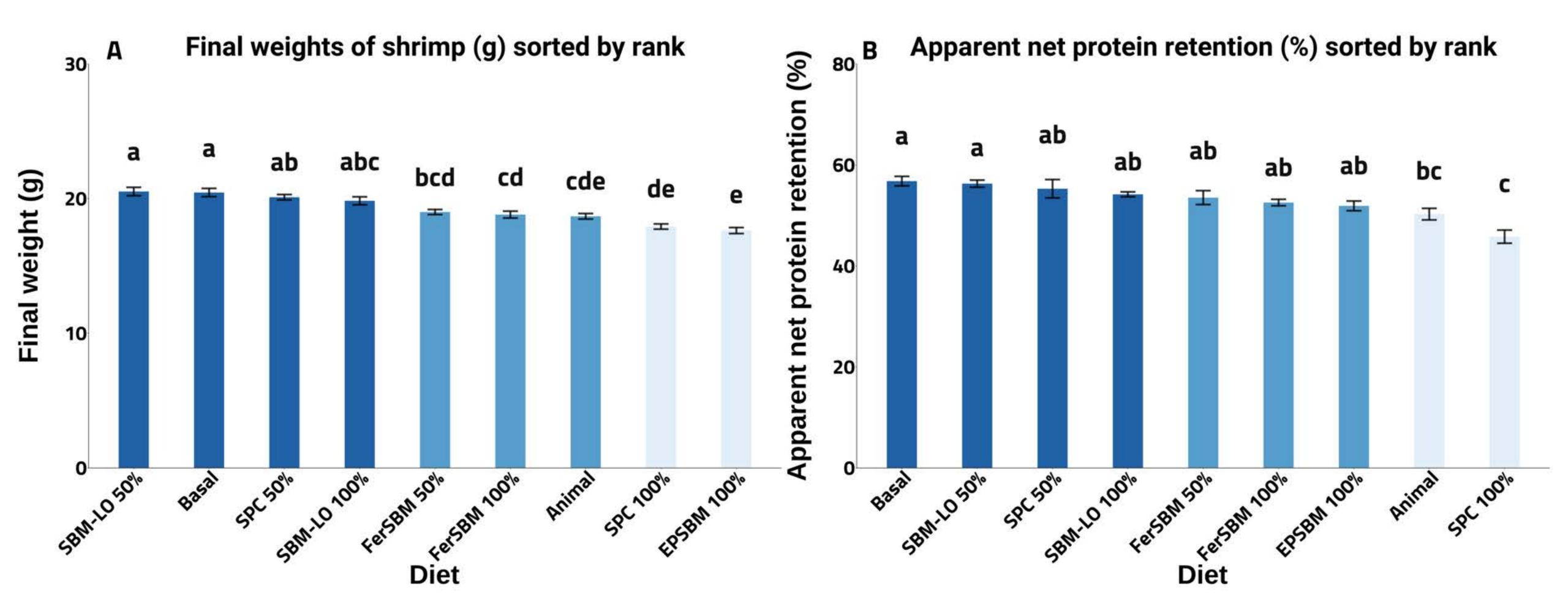



Figure 4. Final weight and net protein retention sorted by rank of Pacific white shrimp (L. vannamei) cultured in green water recirculating system for eight weeks fed basal (n = 3), FerSBM 100% (n = 4), SBM 100% (n = 3), FrSBM 100% (n = 4), and Animal (n = 4) diets. Bar graphs presented as mean and standard error of the mean as error bar.

## HISTOMORPHOLOGY

| Parameters                 | Basal <sup>a</sup> | SBM-LO<br>50% <sup>b</sup> | SBM-LO<br>100% <sup>b</sup> | SPC<br>50% <sup>b</sup> | SPC<br>100% <sup>a</sup> | FerSBM<br>50% <sup>b</sup> | FerSBM<br>100% <sup>b</sup> | EPSBM<br>100% <sup>b</sup> | Animal <sup>b</sup> | <i>P</i> -value |
|----------------------------|--------------------|----------------------------|-----------------------------|-------------------------|--------------------------|----------------------------|-----------------------------|----------------------------|---------------------|-----------------|
| Fold height<br>(μm)        | 19.74              | 19.51                      | 20.80                       | 20.55                   | 17.81                    | 25.79                      | 22.04                       | 21.94                      | 22.70               | 0.859           |
| Enterocytes<br>height (µm) | 18.11              | 17.51                      | 19.30                       | 18.77                   | 16.54                    | 24.00                      | 20.36                       | 20.14                      | 21.05               | 0.850           |
| Microvillus<br>height (μm) | 1.68               | 2.22                       | 1.44                        | 2.04                    | 1.32                     | 1.99                       | 1.88                        | 1.85                       | 1.68                | 0.726           |

Note: Values represent the mean of three replicates (a) and four replicates (b) of each diet. \*Non-parametric Kruskal-Wallis analysis

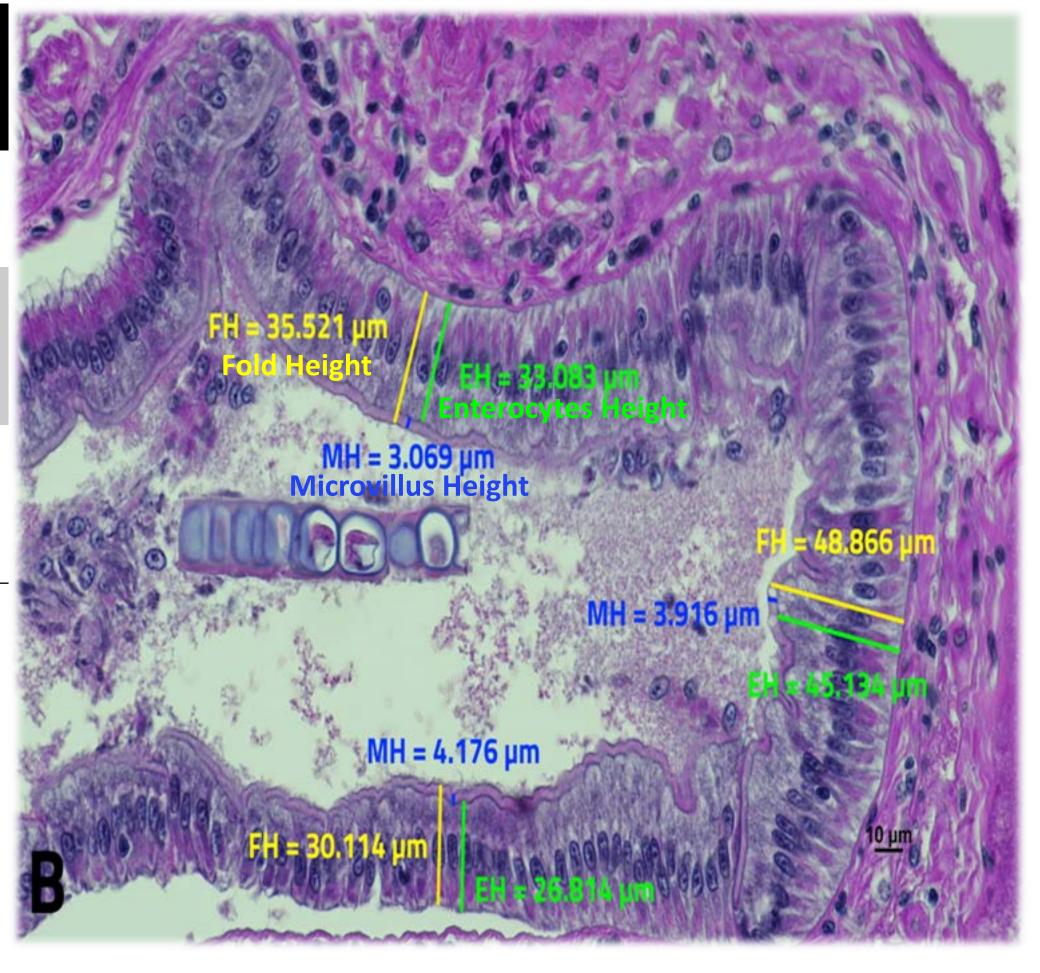
Means not sharing any letter are significantly different by the Tukey's HSD-test (parametric ANOVA) or Dunn's test (non-parametric Kruskal-Wallis) at the 5% level of significance.

SBM: solvent-extracted soybean meal (Bunge)

FerSBM: fermented SBM meal

(Hamlet HP300)

PBM: poultry by-product meal


SBM-LO: SBM low oligosaccharide (Bright Day)

EPSBM: expeller-pressed soybean

meal (All Sustained)

SPC: soy protein concentrate (Soycomil PE)

FM: fish meal



## GENE EXPRESSION

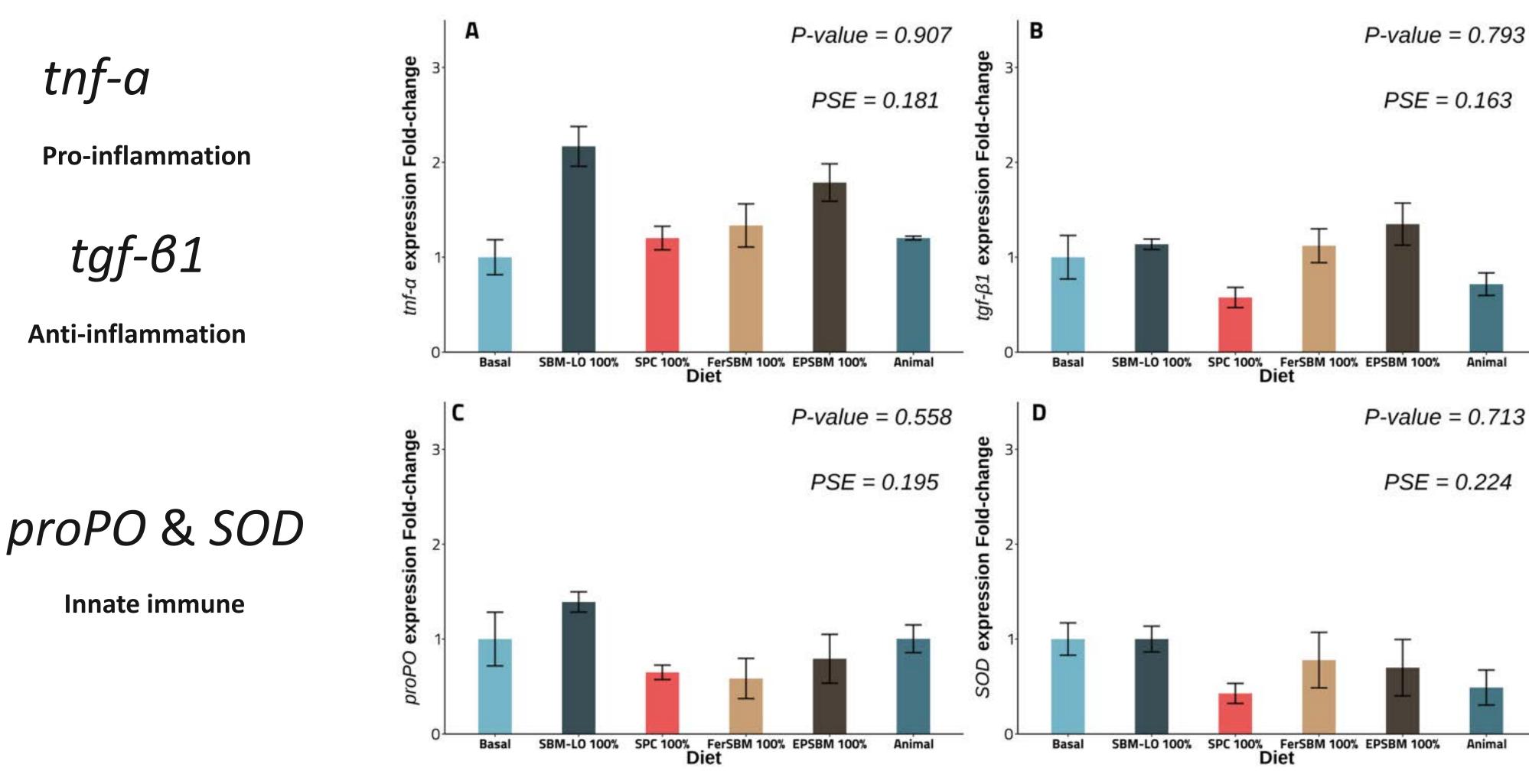


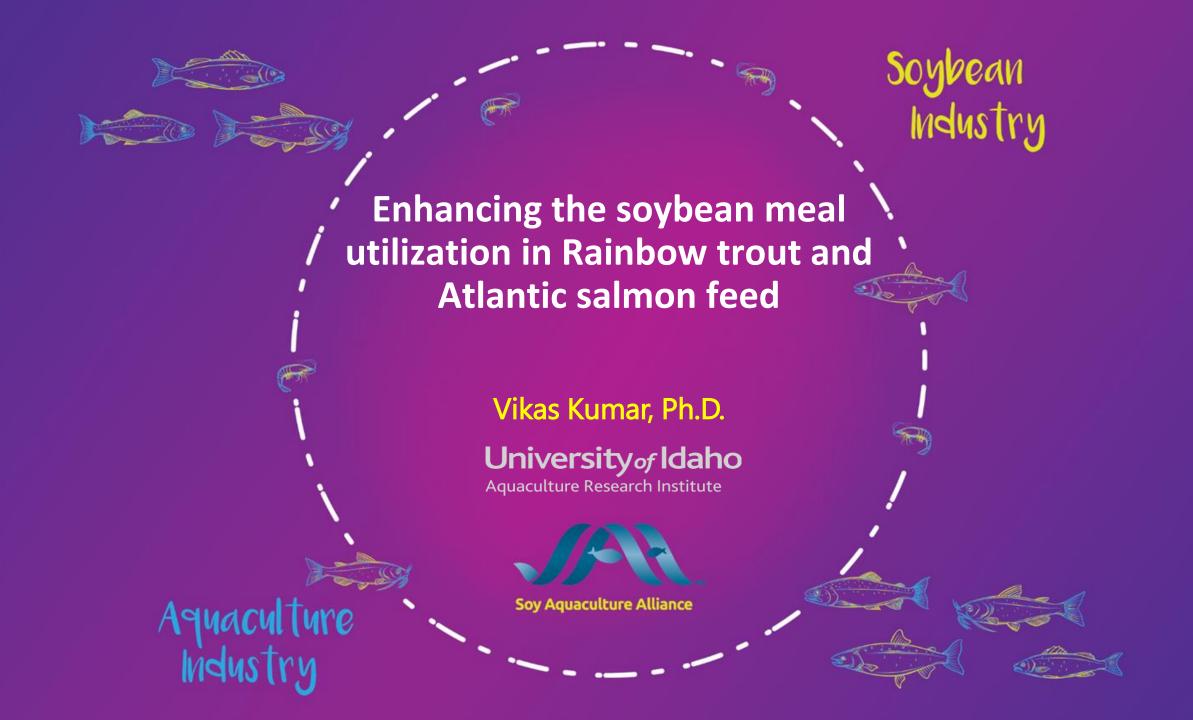

Figure 5. Gene expression of Pacific white shrimp (L. vannamei) cultured in green water recirculating system for eight weeks fed basal (n = 3), FerSBM 100% (n = 4), SBM 100% (n = 4) diets. Bar graphs presented as mean and standard error of the mean as error bar.

# Conclusions (shrimp and pompano)

- Species difference to the response to soy products.
- Origin/processing of the soybean meal largely contributes to the quality of soybean meal products. High inclusion is not appropriate for all types of soy.
- Various meal can improve digestibility, nutrient retention (P), as well as growth performance.
- Reduced performance may reflect palatability and nutrients issue rather than anti-nutrients factors



Dr. D. Allen Davis


Trenton Corby, Khanh Quoc Nguyen, Trinh Ngo, Stephanie Velasquez

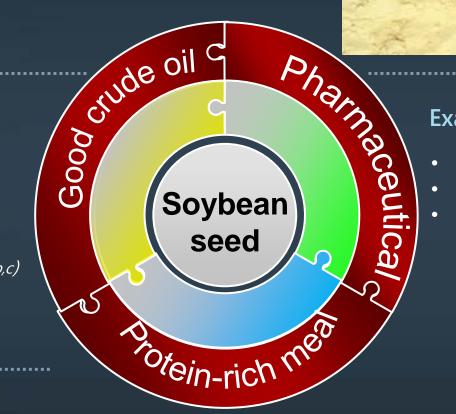
& Dr. Timothy Bruce










#### Soybean Seed

#### **Examples:**

#### Good quality of oil:

- •Soybean seed = 20-25%
- •Human food
- Animal and fish feed

(Source: Kumar, 2010a,b; 2011a,b,c)



#### **Examples:**

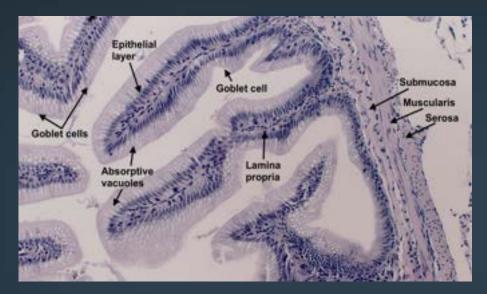
- Isoflavones
- Steroid hormones
- Glyceollins (Source: Sacks et al., 2006; Kim et al., 2010)

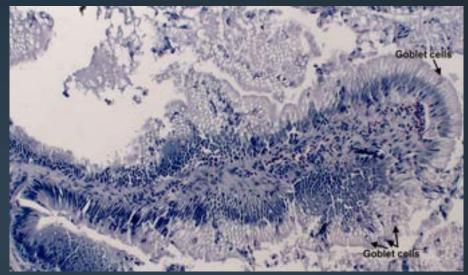
**Antinutrients!** 

#### **Examples**

• Crude protein: 40-48%, vitamins and minerals

(Source : Kumar, 2010a,b; 2011a,b,c)





#### Distal Intestinal Morphology – Rainbow trout

Fish meal

Soybean meal







20X





Kumar et al., (Unpublished)

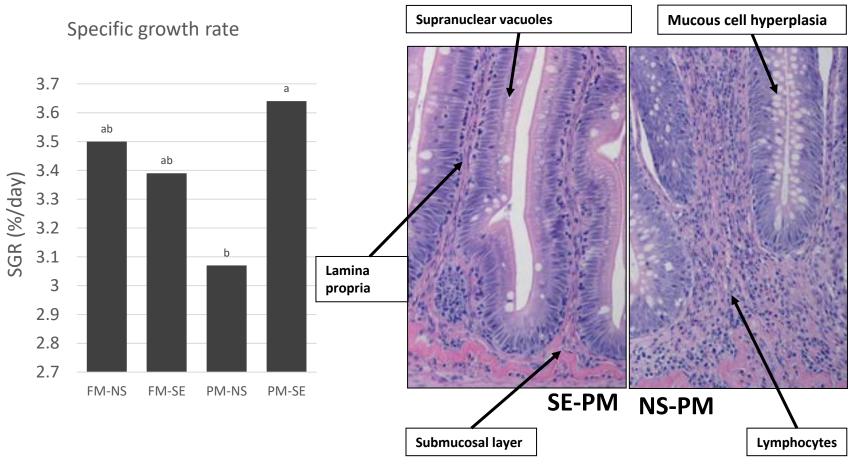


#### **Goal and Projects**

Overall goal to increase the inclusion of soy in salmonids diets

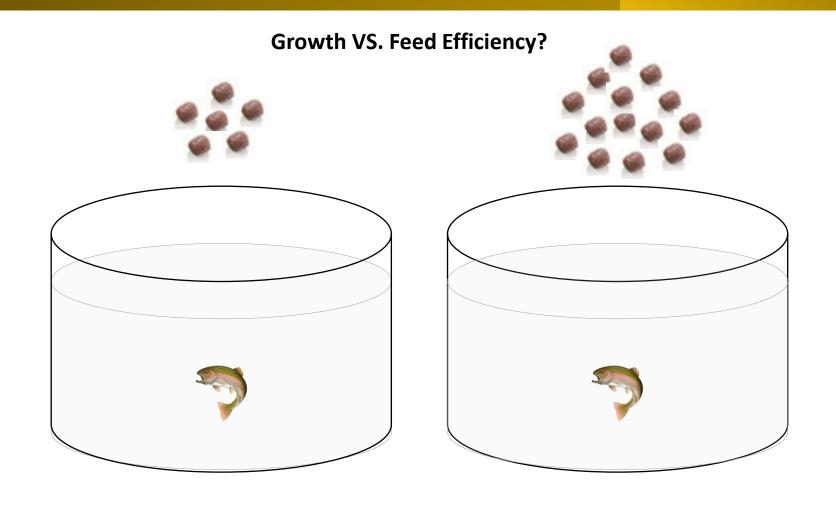
Project 1: Improving "Feed Efficiency" of soy diets in selected rainbow trout

Project 2: Enhancing the soybean meal utilization in Rainbow trout via black soldier fly larvae

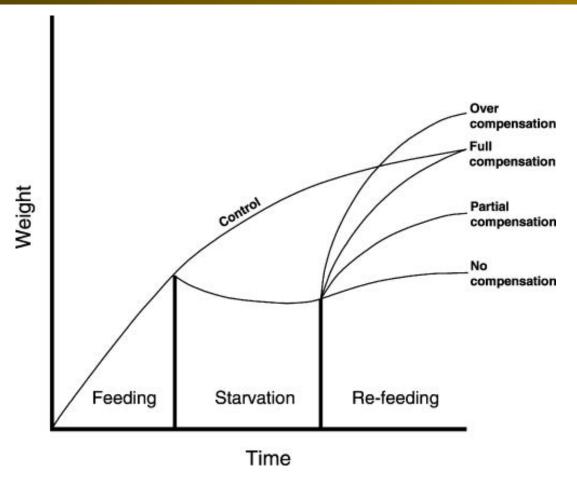

Project 3: Improving the soybean meal utilization in Atlantic salmon via black soldier fly larvae

Rainbow Trout
Selection for Plant
Protein Utilization
(UI-ARI and USDA)




#### Growth Performance And Effects Of Selection On Enteritis

| Ingredient<br>(% of total) | Plant meal<br>(PM diet) |
|----------------------------|-------------------------|
| Soy protein concentrate    | 23.00                   |
| Soybean meal               | 25.00                   |
| Wheat gluten<br>meal       | 2.24                    |
| Wheat flour                | 13.3                    |
| Fish oil                   | 17                      |




FM=Fish meal, PM=Plant meal, NS=Non-selected, SE=Selected

# **Project 1:** Improving "Feed Efficiency" of soy diets in selected rainbow trout



#### Hypothesis: Patterns Of Growth Compensation In Fish

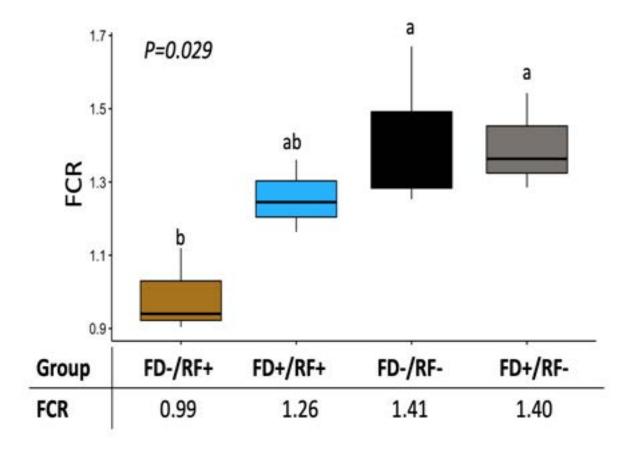


Jobling, 1994; Ali et al., 2003

#### Factors affecting compensatory growth:

- Length and intensity of deprivation
- Influence of Social Factors
- Seasonal variation
- Sexual maturation and reproduction
- Hyperphagia

#### FCR Varies Among the Four Groups


#### **Four groups:**

<u>FD<sup>-</sup>/RF<sup>-</sup></u>: fish exhibiting loss and gain lower than the population mean

<u>FD<sup>+</sup>/RF<sup>+</sup></u>: fish exhibiting loss and gain higher than the population mean

<u>FD<sup>-</sup>/RF<sup>+</sup></u>: fish exhibiting loss lower and gain higher than the population mean

<u>FD<sup>+</sup>/RF<sup>-</sup></u>: fish exhibiting loss higher and gain lower than the population mean



## Outcomes and Benefits

- Genetic improvement of rainbow trout for efficient SBM diet utilization
  - 10-20% increase in feed efficiency
  - Lower cost of production
  - Sustainable aquaculture
  - Can be applied for other commercial fish

Need further research for breeding program: offspring for feeding trial to check their feed efficiency capacity

BREEDING/SPAWNING?



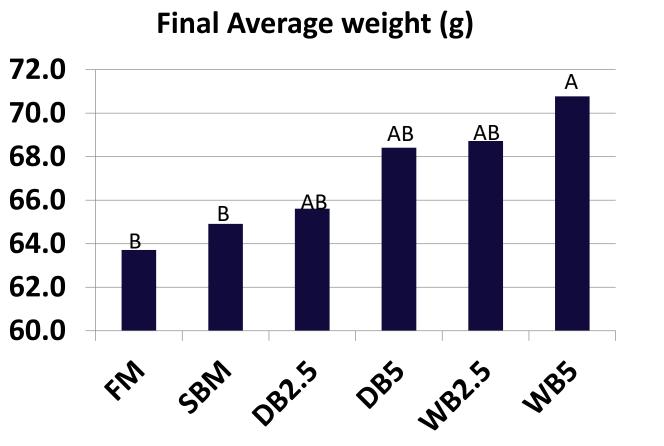


# Project 2: Enhancing the soybean meal utilization in Rainbow trout via black soldier fly larvae

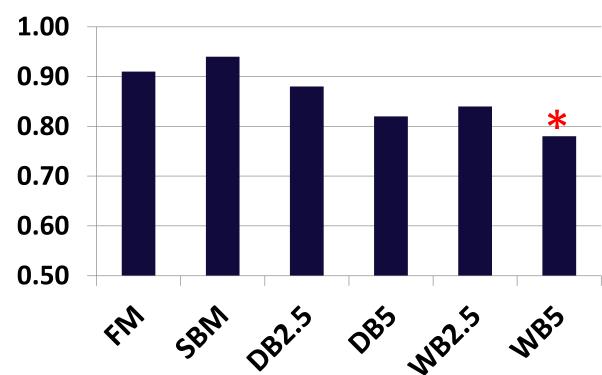
#### Pre-challenge (PHASE 1): 70 days

- Diets: 6 isonitrogenous (49% CP) & Isolipidic (20% lipid)
  - Fishmeal
  - Soybean meal (SBM)
  - SBM + DB 2.5%
  - SBM + DB 5%
  - SBM + WB 2.5%
  - SBM + WB 5%
  - \***DB** Defatted black soldier fly larvae
  - \*WB- Wholebody black soldier fly larvae
- 4 tanks/treatment: 30 fish/tank
- Initial weight of 4.5g ± 0.5g

#### Post-challenge (PHASE 2): 28 days

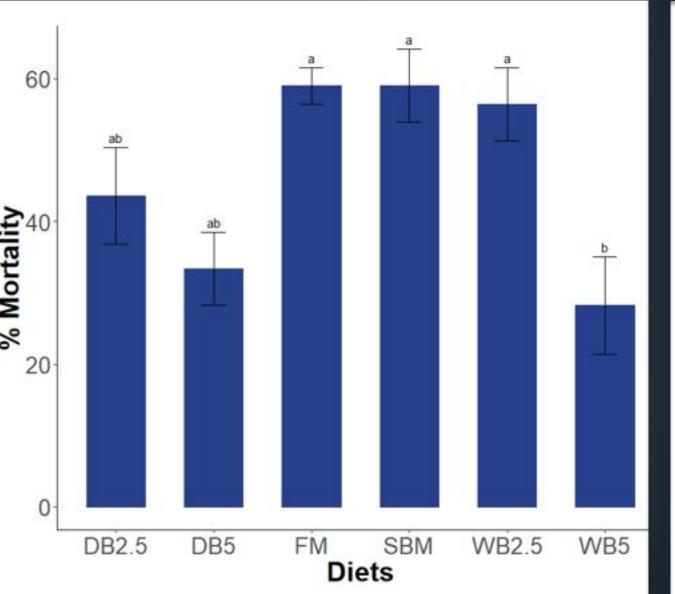

- Flavobacterium psychrophilum
- Dose 100 μl/fish (1.07 x 10<sup>8</sup> CFU/fish) given intraperitoneally.
- Initial weight of 65g ± 5g
- 1 tank/ treatment for mock (PBS placebo): 13 fish/tank
- 3 tanks/treatment for disease challenge: 13 fish/tank

| DIETARY COMPOSITION % INGREDIENT INCLUSION |            |       |         |       |         |       |  |  |  |  |  |  |
|--------------------------------------------|------------|-------|---------|-------|---------|-------|--|--|--|--|--|--|
|                                            | Control/FM | SBM   | WB-2.5% | WB-5% | DB-2.5% | DB-5% |  |  |  |  |  |  |
| FM                                         | 25.00      | 10.00 | 10.00   | 10.00 | 10.00   | 10.00 |  |  |  |  |  |  |
| Soybean meal                               | 0.00       | 30.00 | 30.00   | 30.00 | 30.00   | 30.00 |  |  |  |  |  |  |
| Whole BSFL (WBSFL)                         | 0.00       | 0.00  | 2.50    | 5.00  | 0.00    | 0.00  |  |  |  |  |  |  |
| Defatted BSFL (DBSFL)                      | 0.00       | 0.00  | 0.00    | 0.00  | 2.50    | 5.00  |  |  |  |  |  |  |
| Canola meal                                | 11.50      | 3.00  | 2.70    | 1.60  | 2.60    | 1.60  |  |  |  |  |  |  |
| Wheat gluten meal                          | 4.00       | 4.60  | 4.60    | 4.40  | 4.60    | 4.60  |  |  |  |  |  |  |
| Corn protein concentrate                   | 4.00       | 4.50  | 4.50    | 4.30  | 4.50    | 4.50  |  |  |  |  |  |  |
| Blood meal                                 | 12.00      | 12.80 | 12.30   | 12.84 | 12.20   | 12.10 |  |  |  |  |  |  |
| Wheat flour                                | 18.70      | 12.18 | 11.43   | 11.46 | 11.41   | 11.25 |  |  |  |  |  |  |
| Poultry meal                               | 6.40       | 3.00  | 2.70    | 1.60  | 2.60    | 1.60  |  |  |  |  |  |  |
| Fish oil                                   | 15.50      | 16.88 | 16.23   | 15.75 | 16.54   | 16.32 |  |  |  |  |  |  |

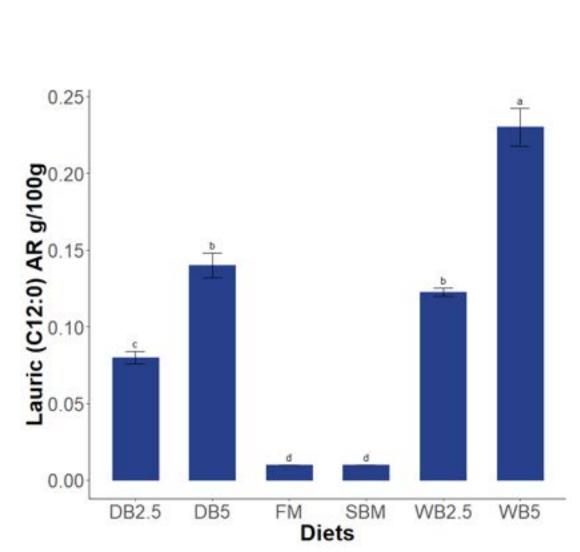

# Growth performance and Feed utilization



Initial average weight: 5.2 g

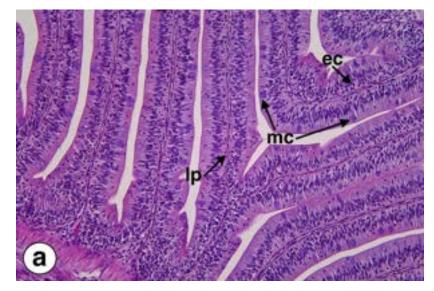


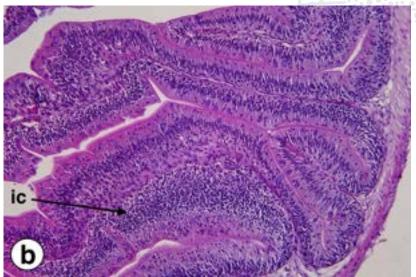

#### Feed conversion Ratio (FCR)



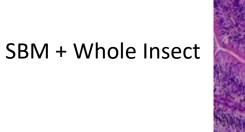

PHASE 2: Bacterial challenge (28 DAYS) -

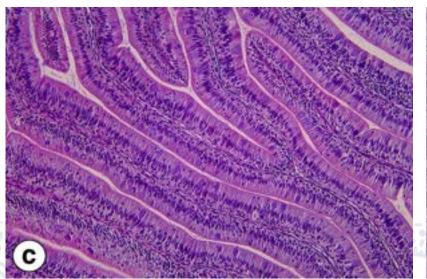
Flavobacterium psychrophilum

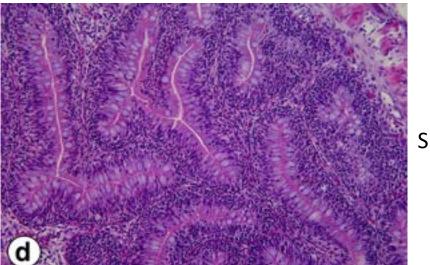




## Lauric acid in the whole body (w/w)




## **Gut Histology – Pre-challenge study**


Control (Fish meal)

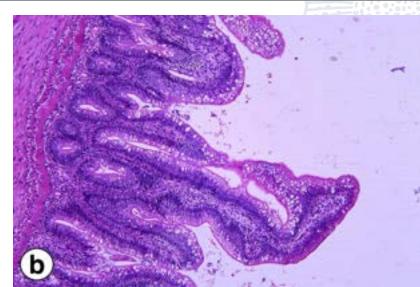





Control (Soybean meal, SBM)

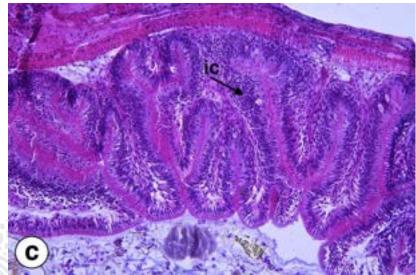


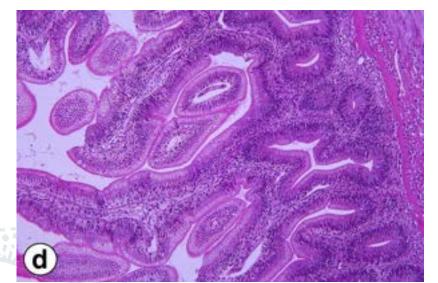





SBM + Defatted Insect

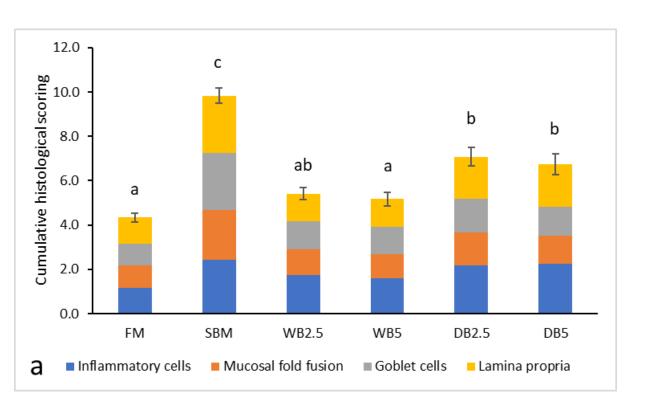
## **Gut Histology - Post-challenge study - Cold water disease**

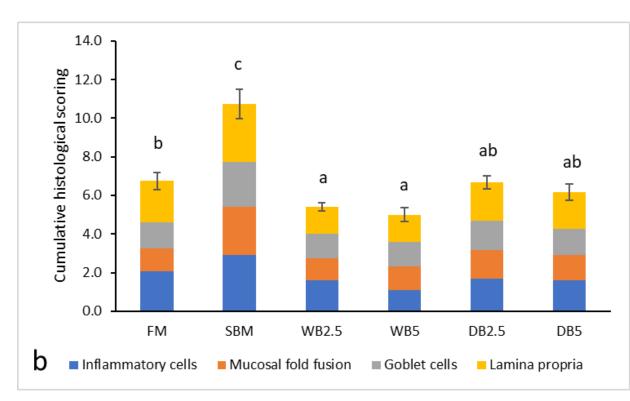

Control (Fish meal)






Control (Soybean meal, SBM)


SBM + 2.5% Whole Insect







SBM + 5% Whole Insect

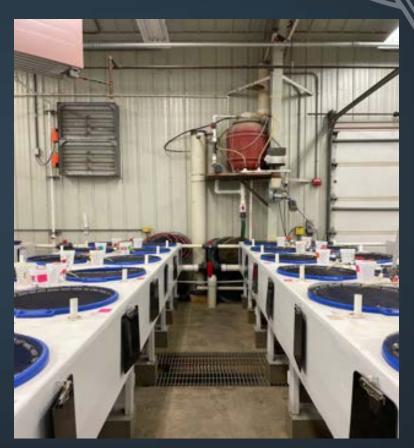
## **Cumulative histopathological scoring**



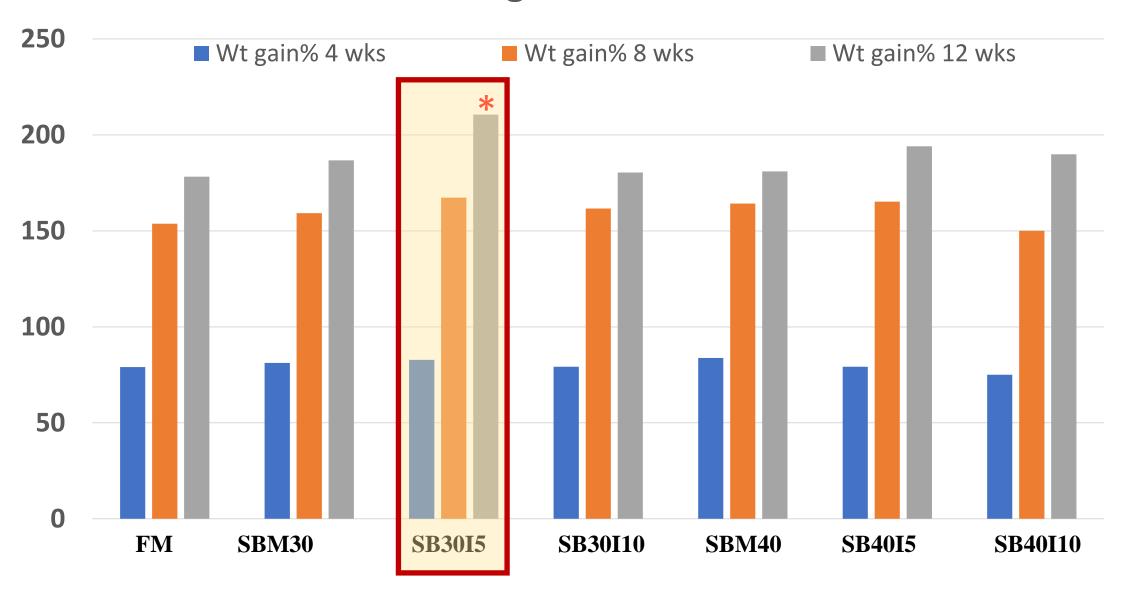


# Concluding remarks

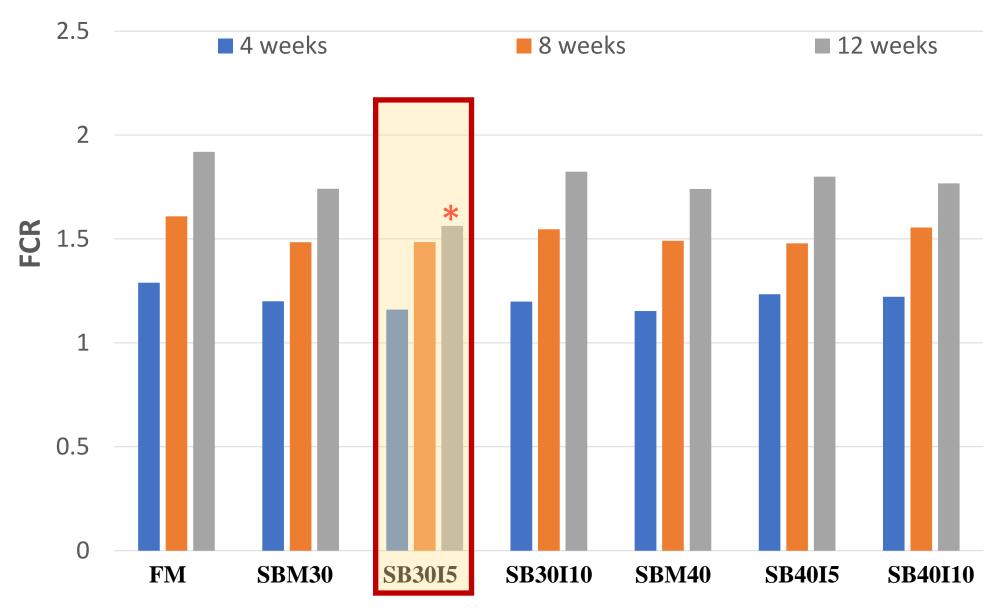



- Nutritional composition of whole body
- Cold water disease
- Insect meal mitigate soybean meal induced enteritis
- Alternative approach to handle the practical problems in aquafeed industry

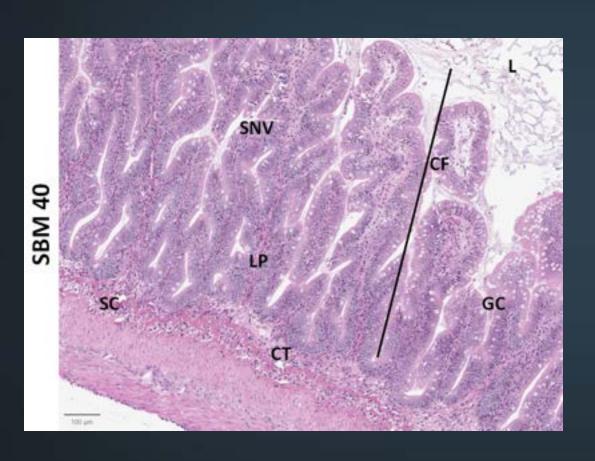
Project 3: Whole Insect meal as a complementary ingredients for soy – Atlantic salmon feed


#### Feeding Trial – 12 weeks

Diets: 7 isonitrogenous (41% CP) and isolipidic (20% CL)


- 1. Control feed 0% SBM + 30% fishmeal (FM)
- 2. 30% SBM + 10% FM
- 3. 30% SBM + 10% FM + 5% BSFL
- 4. 30% SBM + 10% FM + 10% BSFL
- 5. 40% SBM + 10% FM
- 6. 40% SBM + 10% FM + 5% BSFL
- 7. 40% SBM + 10% FM + 10% BSFL
- Completely Randomized Design to assign diets to tanks
   \*BSFL- whole insect black soldier fly larvae
- 3 tanks/treatment, 30 fish/tank




## Percent Weight Gain – 12 weeks



#### **Feed Conversion Ratio**



# **Distal Intestine - Histology**





### **CONCLUSIONS**

Dietary supplementation of whole black soldier fly larvae meal in soybean meal diets for Atlantic salmon:

- Improves growth performance
- Enhances soybean utilization
- Mitigates gut health/enteritis
- Provides an alternative dietary approach to improve utilization of feed ingredients in sustainable aquafeed



# Acknowledgement











| Feed Formulation for Atlantic | salmon Projec | t (Soy Aquacul | ture Alliance) |           |            |           |            |
|-------------------------------|---------------|----------------|----------------|-----------|------------|-----------|------------|
| SAA Project August 2022       |               |                |                | -         |            |           |            |
|                               | D1            | D2             | D2             | D4        | D5         | D6        | D7         |
|                               | 0%            | 0.00%          | 0.00%          | 5% Insect | 10% Insect | 5% Insect | 10% Insect |
| Ingredients                   | Control       | SBM30          | SBM40          | SBM30     | SBM30      | SBM40     | SBM40      |
| FM                            | 30            | 10             | 10             | 10        | 10         | 10        | 10         |
| Soybean meal                  | 0             | 30             | 40             | 30        | 30         | 40        | 40         |
| Whole BSFL                    | 0             | 0              | 0              | 5         | 10         | 5         | 10         |
| Canola meal                   | 12            | 7              | 3              | 6.5       | 5.2        | 2.7       | 1.5        |
| Wheat gluten meal             | 3.5           | 4              | 2.4            | 3.5       | 3.1        | 2.7       | 2.4        |
| Corn protein concentrate      | 3.5           | 4              | 2.4            | 3.5       | 3.1        | 2.3       | 2.1        |
| Blood meal                    | 3.7           | 4.1            | 3              | 3.5       | 3.3        | 2.4       | 1.8        |
| Wheat flour                   | 23            | 14.5           | 12.5           | 13.4      | 12.9       | 11.5      | 10.7       |
| Poultry meal                  | 6.4           | 6.4            | 6.4            | 5.8       | 4.8        | 4.2       | 3.5        |
| Fish oil                      | 15            | 16.3           | 16.3           | 15.1      | 13.9       | 15.2      | 14         |
| Dicalcium phosphate           | 1.2           | 1.2            | 1.2            | 1.2       | 1.2        | 1.2       | 1.2        |
| Choline chloride (60%)        | 0.6           | 0.6            | 0.6            | 0.6       | 0.6        | 0.6       | 0.6        |
| Vitamin premix                | 0.8           | 0.8            | 0.8            | 0.8       | 0.8        | 0.8       | 0.8        |
| Trace Mineral mixture, Trouw  |               |                |                |           |            |           |            |
| nutrition                     | 0.1           | 0.1            | 0.1            | 0.1       | 0.1        | 0.1       | 0.1        |
| Vitamin C, Stay C-35)         | 0.2           | 0.2            | 0.2            | 0.2       | 0.2        | 0.2       | 0.2        |
| Lysine                        | 0             | 0.6            | 0.8            | 0.6       | 0.6        | 0.8       | 0.8        |
| Methionine                    | 0             | 0.2            | 0.3            | 0.2       | 0.2        | 0.3       | 0.3        |
| TOTAL                         | 100           | 100            | 100            | 100       | 100        | 100       | 100        |

# Q & A

Please submit questions.





# **Question Prompts**

- What emerging research are you excited about?
- What are the biggest challenges U.S. aquaculture has yet to solve?





#### Scan to Save Contact



# THANK YOU!

#### Easton Kuboushek

Executive Director
easton@soyaquaculture.org
www.soyaquaalliance.com





